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The return to isotropy of homogeneous axisymmetric turbulence at Re, M 28 is 
studied by means of the direct spectral simulation (DSS) technique of Orszag & 
Patterson (1972) and the direct-interaction approximation (DIA) of Kraichnan 
(1959) as implemented by Herring (1974). The results of the two methods are 
compared for different initial degrees of anisotropy . The general agreement 
between the methods is good. Most of the discrepancies can be attributed to 
present technical limitations in implementing both schemes. The DSS has been 
found to be superior for strong anisotropies, because the numerical method used 
for solving the DIA equations is limited in its angular resolution. For small 
anisotropies the angular anisotropy becomes less important and the DIA results 
are accurate; in this case the DIA seems to be superior as it is free from the 
statistical uncertainties inherent in the DSS method. With respect to a return- 
to-isotropy study these statistical errors are large, in particular for small aniso- 
tropies. The physical interpretation of the angular energy distribution is dis- 
cussed also. The numerical results and theoretical considerations for the DIA 
equations show that one should retain angular moments at least up to the fourth 
in order to  obtain accurate values of the Rotta constant at moderate anisotropies. 

1. Introduction 
This paper investigates homogeneous axisymmetric turbulence. Results of 

direct spectral simulations (DSS) based on the numerical technique of Orszag & 
Patterson (1972) are compared with statistically equivalent results from the 
direct-interaction approximation (DIA) of Kraichnan (1959). The extension of 
the DSS to study the effect of pressure fluctuations will be described by Schumann 
& Patterson (1976 a) ,  who will also report certain results for anisotropic turbulence 
(19763). The method of solving the DIA, together with preliminary results, has 
been described by Herring (1974). The comparison of numerical experiment and 
theory in the present study is made at a rather modest value of Re, M 28 (this 
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restriction is dictated by the scatter in the DSS results). Our comparison includes 
gross measures of anisotropy (such as Rotta’s (1951) return-to-isotropy rate) as 
well as detailed spectral information on the components of the Reynolds-stress 
tensor and its angular distribution. 

The present paper focuses on an assessment of the accuracy of the DIA as a 
complete turbulence theory, free from empirical parameters. We plan, in a 
subsequent paper, to examine the implications of such a theory for practical 
turbulence problems in more detail. 

Overall, the agreement between the DSS experiment and DIA theory is 
excellent: not a surprising conclusion if we recall the good agreement reported 
for equivalent isotropic turbulence (Herring & Kraichnan 1972) and the fact 
that anisotropic effects should be significant mainly in the energy range, in which 
the DIA is expected to be most accurate. The agreement between the DSS and 
DIA appears to be best for the spherically averaged components of the scalars 
of the Reynolds-stress spectrum tensor, and somewhat poorer for their higher 
angular harmonics. This discrepancy does not appear appreciably to affect the 
Rotta return rate. 

The Rotta constant (defined as €he fractional rate of decrease of anisotropy 
using a time scale comprised of the longitudinal length scale and turbulence 
energy) ranges for the runs considered from 0.7 to 0.8. This range of values is 
somewhat smaller than that usually adopted in phenomenological theories (cf. 
Launder et al. 1973). It is also somewhat smaller than the preliminary DIA 
results of Herring (1974), but his calculations use a more severely truncated 
angular representation than the present one. With regard to the fact that the 
computed rates are smaller than those of the phenomenological theories, we 
suggest that this discrepancy results because models must allow for boundary 
effects as well as for non-axisymmetric components of the Reynolds stresses, 
while the present study includes neither of these. Interestingly, the present 
results are not discordant with the original estimates of Rotta (1951). 

In  3 2, we review briefly the notation and concepts for describing axisymmetric 
turbulence, from the perspective of numerical simulation. A more complete 
account of these ideas is presented in Schumann & Patterson (19763). Section 3 
states the DIA equations, describing briefly the special ingredients appropriate 
to axisymmetric turbulence, and the technique for numerically solving these 
equations. The principles of this procedure are presented in Herring (1974). The 
general basis of the DIA is also described by Leslie (1973), Orszag (1976) and, 
of course, Kraichnan (1959, 1964). The comparison between theory and simu- 
lation is given in 0 4. The results include gross measures of anisotropy, such as the 
Rotta return rate, as well as detailed spectral comparisons of the angular distribu- 
tion of the Reynolds stress. Section 5 presents a discussion of the physical meaning 
of the angular distribution. Section 6 discusses certain aspects of the DIA which 
are important in describing anisotropic turbulence but are not explicitly needed 
for isotropic turbulence. The important question here is the number of angular 
harmonics needed to represent accurately the Reynolds-stress spectrum (and 
associated Green’s function) for a given degree of initial anisotropy. 
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2. Notation and concepts for the direct spectral simulation (DSS) of 
axisymmetric turbulence 

We consider the decay of homogeneous turbulence in an incompressible fluid 
with constant viscosity v. For computational convenience, periodic boundary 
conditions are imposed with periodic length Lbox in each space direction. The 
smallest wavenumber is then kmin = 27r/LbOx. The velocity vector u at the space 
position x at time t may be expanded in a Fourier series 

u(x,t) = C Q(k,t)exp(ik.x), 
all k 

where the Q(k, t )  are the (complex conjugate) spectral modes for the discrete set 
of wavenumber vectors k = kmin N; N is an integer vector. I n  the present 
numerical method we retain all wavenumbers k with I kl < kmax, where 

kmax/km,, = (242)) M 15.6. 

This corresponds to 323 points being treated in real space. The spectral modes Q 
are determined by integrating the Navier-Stokes equations in time steps At. For 
technical details see Orszag & Patterson (1972). The pressure field is computed 
as described in Schumann & Patterson (1976a). The above value of km,, restricts 
accurate simulations to Reynolds numbers Re, 5 40. 

Initial values of u comprise a realization of an axisymmetric Gaussian ensemble 
whose axis of symmetry is n = (0, 0 , l ) .  

The second-order ensemble-mean moTents of Q in axisymmetric turbulence 
can be expressed by two scalar functions W ( k ,  t, t’) (Herring 1974): 

2 

(ai(k, t )  ai( - k, t ’ ) )  = Z 
a = i  

(k, t, t‘) e:(k) ejX(k), 

where the angular brackets denote the ensemble average and the unit vectors 
e1 and e2 are 

el(k) = kxn/lkxnl, e2(k) = kxel(k)/lkxel(k)(. (2.3) 

The initial values Q(k, 0) are determined in yeordance with specified values of 
&(k, 0, 0). They are chose such that the W(k, 0, 0) are independent of the 
direction of k, being given by 

where a is an arbitrary parameter characterizing the initial anisotropy (0 < a < 1) 
and g(k, t )  is the energy spectrum: 

B(k ,  t )  3 *B&, t ) .  (2.5) 

The summation convention for repeated subscripts applies, and 

with 

( 2 . 6 ~ )  

k = k{sin 8 cos 4, sin 8 sin q5, cos 8}. (2.6b) 



758 U. Schumann and J .  R. Herring 

Run SA 

Method DSS DIA 

g(k, 0) defined by 
kpenk/km, wavenumber of energy 

k,Jk*, relative cut-off 

Equation (2.8) 

peak 0.3057 0.3333 

wavenumber 15.56 12.10 

vo, r.m.6. velocity at t = O t  0.994 1.0 

ReA (t = 0) , Taylor-scale Reynolds 

Re& = 0 ) ,  integral-scale 

Atv,/A(t = 0) ,  time step 0-04693 0.235 

Number of realizations 3 

number 28.07 28-07 

Reynolds number 35.98 34.99 

t,,v,/A(t = 0) maximum time 

a = a$(t = O ) / ( @ t ( t  = 0) + a$(t = O ) ) ,  

3.7545 
- 

initial degree of anisotropy 0 

t In arbitrary units. 

TABLE 1. Run specifications 

M A  

DSS DIA 

Equation (2.8) 

0.3057 0.333 

15.56 12.10 

1-006 1.0 

28.47 28.47 

36.56 35.72 

0.04738 0.237 

3-7908 

8 - 

0.25 

The angle 8 is defined with respect to the axis n such that 

p = CosO = k.n/lkl. (2 .7 )  

The DSS is run for two initial conditions labelled SA (‘strong anisotropy’; 
this case is identical to case A2 discussed in Schumann & Patterson 1976b) and 
M A  (‘medium anisotropy’). In  both runs, the initial energy spectrum is chosen 
to be 

(2.8) 

where kpeak (the wavenumber for which 8 takes its maximum) and the initial 
root-mean-square (r.m.s.) velocity vi = v2(t = 0 )  = Q(u.u(x, t = 0) )  are given 
in table 1. The initial anisotropy is controlled by the parameter a [see (2.4)], 
which for run SA is 

and for run M A  is 

The resultant initial anisotropy in terms of the gij is 

which takes the values 

Ê (ky 0) = 16(2/n)’~i k&k k4 exp [ - 2(k/kp,ak)2]y 

a = O  (2-9) 
a = 0.25. 

&33/,@11 = 4a/(3 - 2a), 

Also B,, = BllY gij = o if i +j. (2.12) 

(2.10) 

(2.11) a = 0,0.4 for cases SA, M A .  

From these initial conditions the flow decays slowly as it is damped by the 
viscous dissipation 

&(k, t )  = 2vk28&, t )  (2.13) 
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and approaches an isotropic state effeEted by the pressure-strain correlation 
&cj(k, t )  and the inertial energy transfer r&, t ) .  I n  terms of these quantities 

(2.14) 

For the definitions of &ij and Pgj see Schumann & Patterson (19763). Important 
characteristic properties are 

@&t) = 0 (2.15) 

rij(k, t )dk  = 0 for i,j = 1,2 ,3 .  (2.16) and 

If we integrate (2.6) over all wavenumbers k we get the real-space quantities 

A 

agij(k, t ) p t  = &ij(k, t )  + rij(Jc, t )  - t,(k, t> for i,j = I, 2,3.  

SI”” 
E<j(t) = _It,j(k, t )  dk, i,j = 1,2,3,  

( 2 . 1 7 ~ )  

Similarly, the real-space wavenumber integrated values of the pressurestrain 
correlation, dissipation tensor, total energy and total energy dissipation are 
denoted, respectively, by 

@&), €&), E(t) = &E&), €(t)  = $€&). (2.17 b) 

As discussed in detail in Schumann & Patterson (1976a, b), the rate of decay 
and return to isotropy are a function of the wavenumber k. As discussed by 
Herring (1974), the return to isotropy is also a function of the angle 6’. Although 
the &A(k, t, t ’ )  are chosen to be independent of 6’ initially (for t = t’ = 0) ,  they 
become dependent on 6’ after a short time. 

I n  order to examine this angular dependence and to check the DIA results in 
this respect, we express the angular dependence (as in Herring 1974) by means 
of angular moments & f  ( k, t, t ’ )  and Legendre polynomials e(p) : 

s,”“ 
= (u&, t )  ujk t)>. 

L 

I =  0 
&(k,t , t’)  = &:(lkl,t,t’)e(k.n/lkl), h = 1,2,  (2.18) 

G(p) = 1, 4 ( p )  = p, P,(p) = #p2-&, - (2.19) 

As a consequence of axisymmetry and realizability all odd moments are zero. In  
the DIA runs described later, L is restricted to small values (usually L = 2). The 
angular moments with 1 = 0 and I = 2 are sufficient to describe the ,@%j tensor 
(Herring 1974; Schumann & Patterson 1976b, appendix). The 6; computed by 
the DIA are compared with certain DSS moments Zf(k) ,  which are computed 
by the following least-squares fit : 

= minimum, h = 1,2,  (2.20) 

where p is as defined in (2.7) and the computations are for L = 6. The fitting 
procedure results in the usual formula 

(2.21) 
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if the wavenumbers k are distributed continuously. The meaning of the resultant 
moments 2: depends upon the weighting function G ( k )  and the wavenumber 
interval [k,, k,]. Small intervals [k,, k,] are prohibited by statistical errors. We 
therefore compute moments @f(t )  3 Zt(t, 0, km,,, l), which describe the angular 
distribution of the kinetic energy integrated over all wavenumbers k, and 
Q:(t) E @(t,  0, kmax, 2vk2), which describe the angular distribution of the energy 
dissipation rate integrated over all wavenumbers ( A  = 1 ,2 ;  I = 0, 2, 4, 6). 

Further parameters that characterize the flow statistics and are used for 
comparison are the integral length scale L,, the Taylor microscale h and the 
corresponding Reynolds numbers Re, and Re,, as well as the skewness coefficient 
S and Rotta’s (1951) return-to-isotropy coefficients C and C’: 

(2.22) 

k,X A 

8(t) = &[15v/e(t)]Q [ Fii(k, t )  k2dk, 
J o  

(2.25) 

W )  = - @33N E( t ) / (d t )AE( t ) ) ,  C’V) = - @ 3 3 ( t )  L,(t)/(EW A W ) ) ,  (2.26) 

A W )  = V 3 3 ( t )  - - W l l ( t )  +E22(t))* (2.27) 

All these quantities show significant statistical fluctuations about their 
ensemble mean (also discussed by Riley & Patterson 1974). The average taken 
over the discrete values of the velocity field covered by the DSS is not large 
enough to make these mean values equal to the ensemble mean. This is true 
especially for those quantities that depend sensitively upon small values of the 
scalar wavenumber k ,  since the number of modes within a spherical shell in 
wavenumber space increases as k2 (see Schumann & Patterson 1 9 7 6 ~ ) .  Two 
means can be used to reduce the statistical uncertainties. First, we might shift 
the energy-containing region (at k = kpeak) to higher wavenumbers. Secondly, 
we can average over ensembles of realizations; each one is a run starting from 
initial values that are statistically equivalent but are constructed from different 
sets of random numbers. We apply both. The first method would result in large 
truncation errors (at k = kma,), which are circumvented if the Reynolds number 
is reduced. The values of kpeak used here are twice those used for isotropic 
simulations by Orszag & Patterson (1972). For constant viscosity this would 
reduce the Reynolds number to about half its value. Since we want to study 
as high a Reynolds number as possible, we reduced the viscosity somewhat. As 
a consequence the truncation at the cut-off wavenumber is not completely 
negligible. However, we use the same value of kpeak/kmin and about the same 
value of kpeak/km,, in both the DIA and the DSS. Also, the return to isotropy is 
mainly controlled by the energy-containing region (see Schumann & Patterson 
1976b; Herring 1974) and we may, therefore, allow some truncation errors at 
high wavenumbers since the energyrange is of main interest. To reduce statistical 
scatter further, we obtain the DSS results from three realizations in case SA and 
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eight realizations in case M A .  From these realizations it is possible to estimate 
the remaining statistical errors. If xi, i = 1, 2, ..., m, are the results obtained 
from m realizations, the estimates for the mean value 5 and the standard 
deviation a@) are 

(2.28) 

(2.29) 

(We shall give the results in the form 5 & a@) later.) Larger numbers m of 
realizations are necessary for weaker anisotropies if we are computing parameters 
that describe the departure from isotropy as, for example, A@ = @; - @:. If 
a(@;), h = 1, 2, are the standard deviations of @D,h, then the standard deviation 
of A@ is a2(A@) = a2(@;) + g2(@i). In  order to get significant results we require 
a2(A@) < (A@)2. I f  one reduces A@ by a factor of l/a, the number m of realiza- 
tions must be enlarged by a factor of a2 in order to get the same relative accuracy 
in A@. The initial value of A@ for case M A  is half that for case SA; thus a = 2. 
Therefore, the number of realizations should be four times larger for case M A  
in order to get the same accuracy as for SA. (This is even worse with respect to 
AE, defined in (2.27), which is changed by a factor of 2.333.) However, we 
restricted the number of realizations for practical reasons. (It should be noted 
that 13 min of computing time on NCAR’s Control Data 7600 are required for 
one run of type SA or M A . )  This also explains why the statistical accuracy 
decreases rapidly during the return to isotropy. We conclude that it is not 
practical to study weak anisotropies with the DSS. 

3. The DIA for axisymmetric turbulence 
The DIA for axisymmetric turbulence has been described elsewhere (Herring 

1974), and we here summarize only certain important features of these equations. 
The approximation furnishes equations of motion foz the two-time covariances 
&(k, t, t‘) introduced in (2.2). The DIA equations for @(k, t ,  t ’ )  are 

d&(k, t ,  t’)/dt 

dga(k, 8 ,  t’)/dt i- vk2gA(k, t ,  8’) 
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gA(k, t‘, t‘)  = 1. 

I n  (3.1) and (3.2), A,,,(k, p, q) and BA,(k, p, q) are coefficients whose form 
stems from the particular nonlinearity of the Navier-Stokes equations. They 
are given in Herring (1974, equations B6 and B7), and formulae for them are 
given in the appendix. Equations (3.11and (3.2) reduce to the more familiar 
isotropic form of the DIA if we take @ A  = @(lkl) and g A  = g(lk1). Conditions 
on A,,,(k, p, q) and B,,,(k, u, q) which guarantee this are 

2 AA,,(k, P, 9) = 8nkPaa(k, P? a)  +J 
and 

with a(k, p, a) and b(k,  p, a) given by 

a(k, P, a) = *(W, P ,  !I) + W P ,  k, 4 ) )  

b ( k  P, a) = [ (k2  - a2) (P2 - a2) + k2P21 (Pa/k)/d2 (k, P3 !I). and 

In these expressions, d(k, p, a) = k/sin(p, a) is the diameter of the circle 
circumscribing the triangle whose sides are (k, p, a). We 5ecall that in the present 
notation the total modal kinetic energTis &(k, t ,  t )  +@ ( k, t ,  t ) .  Equations of 
motion for the time-diagonal values of @*(k, t ,  t )  are derived by adding to (3.1) 
the equation obtained from (3.1) on interchanging t and t’. 

Preliminary solutions of (3.1) and (3.2) have been presented by Herring (1974). 
There the angular representation of &(k) and gA(k) was specified by a truncated 
Legendre series, as in (2.18). Except for certain studies with infinitely sharp 
wavenumber spectra, that study was limited to include only the 1 = 0, or spheric- 
ally averaged, components of & and gA. The results obtained were in general 
accord with phenomenological estimates of anisotropic turbulence for an approxi- 
mately self-similarly decaying spectrum; the rate of return, defined in terms of 
C’( t )  in (2.26), of an initially anisotropic field of homogeneous turbulence was 
about 1.3. The hypothetical linear nature of the decay of anisotropy was (approxi- 
mately) confirmed by a numerical study of the A and B coefficients and the 
structure of (3.1) and (3.2) and by numerical integration of (3.1) and (3.2). 

The present study focuses on the accuracy of the DIA as a technique for 
approximating initial-value solutions to the Navier-Stokes equations. For this 
purpose, we select an initial energy spectrum that is amenable to accurate 
numerical simulation even within the discrete and truncated wavenumber space 
used for the DSS, rather than one that has the virtue of preserving its shape 
during decay. Such a spectrum must have negligible energy near both the low 
and the high wavenumber cut-off, the spectrum given by (2.8) fits these require- 
ments, provided the initial Reynolds number is not too large. At the same time, 
the rather formidable structure of (3.1) and (3.2) suggests that the number of 
angular harmonics treated must not be too large. Put differently, a calculation 
with a given angular harmonic cut-off L is accurate for an initial-value problem 
only if the initial departure from isotropy is less than an amount implied by L. 
The requirement of small anisotropy holds with respect both to the angular 
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harmonic representation and to the scalar difference &2-&1. I n  the present 
paper, we truncate the angular expansion of (3.1) and (3.2) after L = 2. As we 
shall see, truncation at this level is adequate for moderately strong anisotropies, 
but is by no means adequate for all practical problems involving axisymmetric 
turbulence. 

It is of interest to note the level of computer effort required to solve (3.1) and 
(3.2), as compared, for example, with the equivalent isotropic problem. The 
right-hand sides of (3.1) and (3.2) have the same time history and wavenumber 
convolution structure as the isotropic DIA, but the total number of independent 
terms is 8(L+ 1)4 times as large. Granted that numerical solutions of the DIA 
at moderate Reynolds numbers are now routine, the simplest anisotropic 
problem is thus still fairly sizeable, and requires additional economizing of the 
numerical procedures beyond those used, for example, in Herring & Kraichnan 
(1972) to fit into the same computer. 

Our methods of numerically solving (3.1) and (3.2) are essentially the same as 
those of Herring & Kraichnan (1972) and Herring (1974). For the time stepping, 
we use Euler's modified method with an exact treatment of the viscous dissipation 
terms. Time integrals of the right-hand sides are done by Simpson's rule. The 
wavenumber integration is effected by assuming that the functions 6; ( p ) ,  
g:(p), @(a) and g?(q) can be interpolated in terms of cubic splines whose knots 
are k, (n = 1,2 ,  . . . N ) ,  and then effecting the dp dq integration by an appropriate 
Gaussian method. In  the interpolation scheme, we take the arguments of the 
interpolated functions to be x,, In (k/k,,+ l), with knots k, = k,, [exp (go%)-  11. 
Here x,, is determined such that k, = kma,. This stretching concentrates the k,'s 
in the energy region, where spectral shapes change rapidly, and gives sparsely 
spaced points in the typically smoother dissipation range. For the present 
calculations, N = 10. 

It should be noted that the numerical scheme outlined here is not strictly 
speaking energy conserving. However, the numerically treated p ,  q domain is one 
which properly corresponds to a systematic discard of interactions above a cut-off 
wavenumber kma,. The interpolation procedure thus interpolates conservative 
transfer functions, although accurate numerical integration of the latter depends 
on having a sufficient density of knots k,. Conversely, an insufficiency of knots is 
made manifest by non-zero estimates of the total energy transfer (2.16). We 
use the latter as a test of the numerical accuracy. 

4. Comparison of DSS with DIA results 
We compare numerical and theoretical results for the evolution of four types 

of statistics. First, we consider the integral quantities energy, dissipation and 
skewness. These are not per se measures of anisotropy, but their temporal 
evolution does depend on the initial anisotropy present. They have also been 
examined in earlier comparative studies of isotropic turbulence (e.g. in Orszag 
& Patterson 1972; Herring & Kraichnan 1972; Herring et al. 1973). 

Second, we compare the results with respect to Rotta's return-to-isotropy rate 
C'(t), defined by (2.26). The physical meaning of the above quantities and their 
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0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 

~vol4I  

FIGURE 1. Energy E(t)/E(O) and dissipation e(t)/e(O) ws. time for case M A .  The error bars 
indicate the DSS results, the curves are the DIA results. 

time behaviour has been discussed elsewhere (Herring 1974; Schumann & 
Patterson 1976a, b) .  

Third, we examine the spectral measure of anisotropy&(k, t)/g,,(k, t ) ,  dehed  
by ( 2 . 6 ~ ) .  This quantity, as noted in 3 2, depends only on the first two angular 
moments of the covariance spectrum tensor, but exhibits the wavenumber 
dependence of the return rate. 

Finally, we compare results for the angular moments of energy (a;) and 
dissipation (Q;) for I = 0 and 2. We also present DSS results for I = 4, in order to 
examine the convergence of the angular harmonic expansions. All DIA runs 
(except where otherwise stated) are for L = 2. 

We compare the results obtained for strong [case XA, equation (2.11)], medium 
[case MA, equation (2.11)] and no [case 121 anisotropy. The last case has been 
investigated by Schumann & Patterson (19763). Run I 2  starts from the initial 
conditions (2.8), with a = 0.6 [see (2.4)]. The DIA results for case I2  have been 
obtained with both the present code, designed for anisotropy, and the isotropic 
version used earlier (Herring & Kraichnan 1972). The differences between the 
results of these two codes for the same problem are insignificant or virtually 
zero. 

Figure 1 shows the energy E(t)/E(O) and dissipation e(t)/e(O) vs. time t for case 
M A .  The results for cases I 2  and SA look similar except that the peak value of 
e(t)/e(O) (at tv,/h, M 0.6) decreases with growing anisotropy. The DSS runs give 
peak values of 0.98, 1-04 and 1.05 for initial values of a = 0.0, 0.25 and 0.5. As 
indicated by the error bars, we see that the statistical errors in the DSS results 
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FIGURE 2. Rotta's return rate C' w8. time for (a) case M A  and (b)  case SA. The thin curves 
are the results obtained from the single DSS realizations. 
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for these integral quantities are less than 3%. The DIA results are in good 
agreement with the DSS ones over the full time span of integration. 

Rotta's return rate C'(t) is shown in figures 2 (a)  and (b). Here we present the 
DIA results for L = 0 and L = 2 together with the results obtained from all 
the single realizations of the DSS runs (thin curves) and the result found from 
the ensemble mean. First note the extremely large statistical fluctuations in the 
DSS results. A single realization could be completely misleading. The reason for 
the large statistical fluctuations in C' is not difficult to find. Note that C' is 
computed from four quantities [see (2.26)] each of which is contaminated with 
statistical errors. For example, at tw,/A, = 0.978 for run M A  (in arbitrary units) 

@33 = - 0.351 & 0.053 (15.2 %), AE = 0.214 10.012 (5.4 %), 
E = 1.012 & 0.036 (3.6 %), Lf = 0.272 0.006 (2.2 %). 

(The values in brackets give the percentage error.) The resultant value for C' is 
0.9 f 0.15 (17 yo). We see that the largest errors arise from the pressure-strain 
correlation itself, which is basically determined by third-order correlations 
(Schumann & Patterson 19'763) whereas all other terms are defined in terms of 
second-order correlations. As shown by Orszag (1976) the statistical accuracy 
must be expected to decrease rapidly with growing order. At later t,imes the 
errors in bE become more important. 

The statistical errors seem to be small enough to allow the following conclusions 
from figures 2 (a)  and (b). The agreement between the DSS and DIA is very good 
for both cases if we use the DIA with L = 2. Clearly, L = 0 results in asubstantial 
overestimation of C'(t). For case XA the agreement is not as good a t  small times, 
but improves somewhat a t  larger times, after the higher harmonics die away. 
The small-time overestimation of the return rate by the DIA is probably a result 
of our angular truncation procedure. As shown for simplified cases by Herring 
(1974), the inclusion of additional higher angular moments tends to decrease the 
resultant value of C'. Hence it appears that, for the DIA, L = 2 is too small for 
strong anisotropies; more evidence to support this conclusion will be given later. 

The DSS results shown in figures 2 (a)  and (b) also indicate a small decrease in 
C' with growing anisotropy; thus the DSS result for C' is about 5 yo smaller for 
SA than for M A  ; this is, however, not entirely conclusive because of statistical 
uncertainties. For the DIA, a 20 yo reduction is obtained on passing from M A  
to XA for the L = 0 truncation, while for L = 2, the DIA results indicate the 
opposite tendency: the values of C' are about 10 % larger for SA than for M A .  
This will be discussed further in 5 5.2. 

The wavenumber dependence of the return to isotropy, as measured by the 
ratio r(k,  t )  = g3Jc, t)/gl1(k, t )  as a function of k at selected times, is given in 
figures 3 and 4. For t = 0 this ratio is as given by (2.10) and (2.11). [Equation 
(2.11) holds for the DSS runs for case M A  within statistical errors only.] We see 
the return to the 'isotropic' value r = 1, with a larger return rate at high wave- 
numbers. At later times the inertial energy transfer, which is anisotropic owing 
to the anisotropy at low wavenumbers, retards the return to isotropy. Again, we 
see relatively large statistical errors for the DSS results; they are largest at small 
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wavenumbers, where only a few modes are present. Nevertheless, the DIA and 
DSS results for case M A  (figure 3) show good agreement at all times and wave- 
numbers. The DIA results are only slightly smaller than the DSS results, as 
expected from the smaller C' values noted above. Figures 4 (a) and ( b )  (case #A) 
indicate that the DIA somewhat overestimates the return rate for moderate k 
and underestimates it for large Ic. Curiously, both theory and simulation show a 
larger departure from isotropy at  very large k than for moderate k. This may 
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perhaps be explained by the presence of the upper wavenumber truncation, 
which reduces the nonlinear interaction in its neighbourhood. 

We next compare results for energy and dissipation angular moments as 
defined by (2.21). The time evolution of the first two moments of energy (@;) 
and dissipation (@) ( A  = 1,2; 1 = 0,2) are shown in figures 5-7. All plotted values 
are normalized by (Di + @: or Szi + Sz: so that (Di and Szi need not be plotted, as 
they are complementary to @: and Sz:, respectively. For isotropic turbulence the 
normalized moments are 0.5 for 1 = 0 and zero otherwise. The moments for 
1 = 0 show the return to isotropy and we find very good agreement between the 
DSS and DIA. The second moments have been designed to be zero initially. We 
find, however, a strong departure to positive values during the transition from 
the anisotropic to the isotropic state. This is as found by Herring (1974) in some 
preliminary calculations. The physical meaning of this finding will be discussed 
later. 

With respect to the higher moments, the DSS results not only show statistica1 
uncertainties, but also a systematic deviation, in that they are negative initially 
and after long times. The latter effect is attributable to the rectangular rather 
than spherical grid used in wavenumber space, together with the general decrease 
in the modal energy as a function of k. This is easiest to see for a very coarse grid 
in two dimensions with n = (0 , l ) .  Let us assume that we keep only the modes at 
(0, 0) ,  (0, f l), ( f 1,O) and ( & 1, f 1) in wavenumber space. As the modal energy 
decreases as a function of k, it  is smaller a t  ( f 1, 5 1) than a t  ( f 1 , O ) .  The energy 
value at (0, 1) does not matter because of the weight 1 -,a2 appearing in (2.20). 
The least-squares fit for such a configuration is the same as if the energy were 
higher at ( -F. 1 , O )  than at  (0, f 1) and we therefore get a negative second moment. 
This effect would not appear if the modal energy were uniform. Its  appearance 
is also very much decreased if we use a finer resolution; therefore this error is 
smaller for the dissipation than for the energy moments, as can be seen by com- 
parison of figures 5 and 6 .  In  the latter figure the statistical uncertainties are 
smaller too, so that the DSS results are more significant with respect to the 
dissipation moments. 

For case M A  the DIA appears to overestimate slightly the build-up of the QZ 
moments, although there is some uncertainty because of the rectangular-grid 
problem for the DSS noted above. For case SA, the DIA also slightly over- 
estimates the O2 moments (these are not shown) and underestimates the i2; 
moment (figure 7 b ) ,  while overestimating the Szg moment. It is difficult to make 
much of these deviations, because of the statistical scatter. However, the over- 
estimation of the CD moments is consistent with a ‘damming up’ of energy in the 
L = 2 components caused by our neglect of modes with L > 2. The underestima- 
tion of the s22, moments for the SA run may be related to the fact that the DIA 
transfers too little energy to large-k regions (Herring & Kraichnan 1972). We 
note in this connexion that figure 8 finally shows that, indeed, the fourth 
moments are not negligible for case SA whereas they are sufficiently small for 
anisotropies that are weaker than in case M A .  

We must point out, however, that the angular resolution is also effectively 
limited for the DSS, especially a t  low wavenumbers. This is so because of the 
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FIGURE 8. DSS results for the fourth angular dissipation moments 
nil( + fit) for h = 1, 2 and (a) case SA and ( b )  case MA.  

small number of discrete wavenumber points that fall into a spherical shell. For 
this reason, the DSS estimate of the sixth-order energy moments (not shown) 
are not significant. 

5. Physical interpretation of the second angular moments 
The angular anisotropy that appears during the transition to the isotropic 

state has been found to be important as it reduces the return-to-isotropy rate 
(and probably also the dissipation rate) and increases the angular resolution 
requirements. It seems, therefore, worthwhile to give a physical picture of the 
evolution and meaning of, at  least, the second ̂ angular moment. 

For this purpose, let us first translate the W(k, t ,  t )  into energies 

(.d,(k> Wj(--k, 0 )  
as we are more used to thinking in these terms. From (2.2) we find for the energy, 
say Epp, of the velocity components perpendicular to the axis of symmetry 
n = (0, 0, 1) 

-@,,(k, t )  = (a,(k, 4 &I( - k, 0 )  + ( fuk,  t )  a,( - k, 0 )  
= &k,t, t)+6'(k,t , t)  C O S ' ~  (5.1) 

and for the energy, say En,, of the velocity components parallel to the axis n 
A 

En, = W(k, t ,  t )  sin2 19. (5.2) 

Therefore, a schematic polar plot of the angular energy distribution for fixed 
k at t = 0 for a = 3 looks like the full line in figure 9. The decrease of En, near 
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FIGURE 9. Schematic polar plot of the angular energy distribution with respect to the 
direction n of the axis of symmetry and any perpendicular direction p for the isotropic 
initial state (full curve) and at a later time (dotted curve) when positive second C J ~  moments 
have evolved. 

n and of Epp near p is a consequence of the continuity equation k . il = 0. The 
fact that the second moments for both h = 1 and h = 2 are positive after a 
short time means that the energy distribution becomes elongated in the direction 
of the axis n. This means that there is energy transfer out of region A into region 
B that is not only large near the p axis (region D) but also relatively large near 
the n axis. This energy transfer from region A to region B dominates until the 
energy in region A becomes equal to that in region D. Therefore, t,he second 
moments are larger for larger anisotropies. So far we have given a picture that is 
consistent with the numerical results. 

We now offer a heuristic explanation of why the second moments evolve 
positively. We use Rotta’s classical picture (see Rotta 1951, figure 2) of two 
moving fluid parcels which collide, both having the same speed but travelling 
in opposite directions, say the 5 p directions. This means that there is a large 
variation in the velocity component in the p direction and thus the Fourier 
decomposition shows a large amplitude at a wavenumber vector which has about 
the same direction as p (as, for example, in region A of figure 9). Such a collision 
causes the fluid between the two parcels to be squashed out into the normal, n 
direction, so that the magnitude and thus the energy of the n component is 
increased on the account of the p component. This increase has different signs 
on the two sides of the collision, i.e. the energy is fed into the p component at 
wavenumbers that are near to the p axis, like those in region B of figure 9. 

This picture indicates that the energy transfer between different components 
is non-local in wavenumber vector space. From the same picture we expect 
negative second moments for a > 0.5 and that is as found in Herring (1974, 
figure 1). We cannot, however, expect a complete symmetry between cases with 
anisotropies a and 1 - a  respectively, since the extreme case a = 0 corresponds 
to two-dimensional turbulence, while a = 1 means that energy is contained in the 
u3 components only. Such a lack of symmetry can be seen from Herring’s (1974) 
figures 1 and 2. 
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6. Technical aspects of the DIA 
In  this section, we discuss certain technical aspects of the DIA which are 

important in applications to anisotropic problems but not explicitly encountered 
in isotropic turbulence. We shall not attempt to describe the physical basis of 
the theory; readers interested in such questions should refer to the references 
cited in 3 1.  

6.1. The coe8cients A+ and BApv 

Let us consider first the coefficients A,,,(k, p, q)  and B,,,(k, p ,  q )  entering 
( 3 . 1 )  and (3.2). These quantities are too complex to examine here in any detail; 
instead, we present their dp integrals for certain selections of (A, p, v) which are 
chosen so as to represent the initial second time derivative 6 ( k ,  0) for isotropic 
angular distributions of &(k, 0, 0). (According to (3.1), the f i s t  derivative is 
zero initially.) Certain of the analytic properties of these coefficients, together 
with a method for their accurate numerical evaluation, are presented in the 
appendix. The solid line in figure 10, for example, represents /A,,,(k, p, q) dfl, 
as a function of p = cos 8 for 1 kl = Ip1 = I ql . Here, dQ, is the angular part of 
the d p  integration in (3.1), and represents a rotation of the (Ic, p ,  p) triangle about 
k. The quantity depicted here is proportional to $,(k,  t ,  t )  for the initial conditions 
(D2(k, 0, 0) = 0 and W ( k ,  0 , O )  and (D2 are spherically symmetric. The figure in- 
dicates strong transfer into the polar regions (Ipl M l), with smaller transfer into 
the equatorialregion (lpl M 0). Suchbehaviour is consistent with the development 
of positive angular moments, found in both the DIA and the DSS calculations and 
explained in 3 5. Also shown in figure 10 are equivalent results for JA12,(k, p, q)dfl, 
(dashed line). In  this case, the transfer is more nearly into midlatitudes (14.1 x 4) 
than for the previous case. A curious feature here is the cusp which occurs at 
8 = $ or y, where $ and y are the interior angles opposite sides p and q of the 
triangle formed by (k, p ,  4). The figure indicates non-analytic behaviour of the 
angular distributions, and suggests that higher angular harmonics will be more 
pronounced in turbulence with prolate (positive second moment) rather than ob- 
late angular distributions. This non-analytic behaviour is verified by the analytic 
study of the angular A and B integrals occurring in (3.1) and (3.2) given in the 
appendix. Thus it turns out that the integration which rotates the (k, p ,  p) 
triangle about k may be shown to yield, in general, functions of the polar angle 8 
with cusps at  8 = (p, 7).  More precisely, the resulting angular distribution is a 
rational function of four variables: Z,(O), . . . , Z,(8), where 

and 8, and 2, are the same as 8, and 8, except that /? is replaced by - y. We thus 
must expect very rapid angular changes in the transfer for ,8 or y tending to 
zero or rr. 

The import of these remarks is that anisotropic turbulence in the DIA frame 
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is more difficult to treat, numerically, than the otherwise equivalent isotropic 
turbulence problem, even after allowing for the increase in program size necessary 
to represent anisotropic aspects of the turbulence. Accurate representation of 
energy flow into the polar regions requires unexpectedly high angular harmonics. 

6.2. Green’s function 

Turbulent relaxation, whereby the flow field ‘forgets’ it! initial statistical state, 
is embodied in the DIA through the two-time functions W(k, t ,  t ’ )  and gh(k, t ,  t’). 
The latter describes the averaged response in the velocity field’s Fourier com- 
ponents ii(k, t )  due to an infinitesimal perturbation at  time t’, and its time 
integral (from t’ to t )  may be thought of as the relaxation time of mode k. It is 
the h i t e  (and relatively small) value of this relaxation time as t - t’ -+ 00 that 
saves the DIA from the fate of the quasi-normal theory (Ogura 1963; Orszag 
1976), for which such integrals diverge, at least for sufficiently large Reynolds 
numbers. The characteristic time of GA(k, t, t ’ )  is typically somewhat longer than 
that of gk(k, t, t’), particularly at large k, where transfer of energy implies that 
these modes partially ‘inherit’ the characteristic times of the region from which 
they receive their energy. 

It is not clear on physical grounds how anisotropy should affect the behaviour 
of the g>(k, t, t ’ )  functions. Preliminary results by Herring (1974) suggested that 
anisotropy had little effect on gk(k, t ,  t ‘ ) ;  for the DIA truncated at L = 0, it  was 
found that gl(k, t, t’) E g2(k, t, t ’ ) ,  regardless of the initial degree of anisotropy. 
Such results could be of use in simplifying the DIA-type theory, so as to make 
high Reynolds number calculations more tractable. For example, Leslie (1973) 
has employed the hypothesis that the anisotropic relaxation effects may be 
entirely neglected in simplifying the DIA so as to apply it to shear flows. 

Some results related to this point are presented in figure 11, which shows the 
I = 0 and Z = 2 harmonics of gh(k, t ,  0 )  for run M A .  The I = 0 components are 
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FIGURE 11. Green's functions g$(k, t ,  0). -, I = 0; - - -, I = 2. Here, the index I designates 
the Zth angular harmonic as defined by (2.18) of g"k, t ,  0 ) ,  which satisfies (3.2). Curves are 
for t = 3-79 h,/v, and run M A .  

given by the solid lines, the 1 = 2 components by the dashed lines. We note the 
close similarity between the h = 1 and h = 2 components, which extends the 
observation made in the preceding paragraph to the L = 2 approximation. On 
the other hand, the 1 = 2 component is not small compared with the 1 = 0 com- 
ponent, so that i t  is not clear that such terms may be neglected with impunity. 
To check this point, we have rerun case N A  with gt(k, t ,  t ' )  = 0 for all ( t ,  t ' ) .  The 
results of this run indicate a small but significant contribution of the 1 = 2 
component of gA(k, t ,  t ' )  to the evolution of anisotropy. In  particular, the value of 
C'(t) increased by about 15%, and also the spectral measure of anisotropy 
Ea3(k, t)/E,,(k, t )  increased by 2-4 yo, with the larger increase at  large k, where 
at  later times it became slightly larger than unity. 

I .  Lullc;luulllg Ulbc;UbblU11 

We must keep in mind that the DIA is a model that describes turbulence only 
approximately and has deficiencies, some of which have been pointed out earlier 
(Kraichnan 1964). Nevertheless, it is a fully self-consistent (computable) 
analytical turbulence theory (Orszag 1976). The DSS method (and similar direct 
numerical simulation schemes), on the other hand, integrates the Navier-Stokes 
equations directly and should give accurate solutions if the resolution (box 
and is sufficiently high. With respect to turbulence statistics it has the 
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disadvantage that large ensembles of results must be produced from which the 
statistical information can be deduced. This is, in principle, a more time-con- 
suming procedure than the DIA. On the other hand, the DSS allows one to 
compute any type of correlation, e.g. fifth-order statistical moments, which are 
beyond the scope of the present version of the DIA, which treats moments up to 
only the third order. Also, the numerical solution of the DIA equations is not 
at all trivial and the present computing time for one DIA run with L = 2 is of 
the same order as one realization produced by the DSS, although this statement 
is certainly preliminary. It would appear necessary to improve the present DIA 
numerical analysis before more complicated, and practical flow problems (e.g. 
large Reynolds number channel flow) are amenable to this type of analytical 
turbulence theory. 

The present results indicate that the numerical analysis of the DIA should 
resolve also the fourth angular moment in order to compute Rotta’s constant 
accurately. This is definitely necessary for strong anisotropies. It would also be 
necessary for all flows with directional forces like buoyancy in natural convection 
or the Lorentz force in a flow of a conducting fluid under an imposed magnetic 
field (Moreau 1968). 

Such problems may in principle be studied without any difficulty by means of 
the DSS method, the only basic limitation being the available computer resources. 
The present study has shown that these limitations in fact exclude application of 
the DSS for small anisotropies.? 

Both methods are limited with respect to the range of Reynolds numbers 
that can be studied with sufficient accuracy. Subgrid-scale models (Schumann 
1975) or appropriately changed statistical theories (Kraichnan 1971) must be 
used for high Reynolds number flows. 

This work was done while Ulrich Schumann was with the Advanced Study 
Program at the National Center for Atmospheric Research, which is sponsored 
by the National Science Foundation. It is in part an extension of previous work 
done in collaboration with Dr G. S. Patterson, whom we should like to thank for 
several discussions. We thank Sandra Fuller for programming the evaluation of 
the DIA coefficients given in the appendix. 

Appendix 
We sketch here some of the essential details in the evaluation of the angular 

integrations in (3.1) and (3.2). Our methods follow those of Herring (1974), but 
we show here how to replace the strictly numerical scheme presented there by a 
semi-analytic method with greatly improved overall accuracy. First, substitute 
the angular expansion (2.18) for &(k, t ,  t’)  and an equivalent one for gA(k, t ,  t ’ )  
into (3.1) and (3.2). There result equations of motion for @(k, t ,  t’) and g:(k, t ,  t ’ )  
upon projecting (3.1) and (3.2) onto q(,uk),pk = cos @k = k.n/k.  (We recall that 

t Professor D. C. Leslie (private communication) has pointed out that this difficulty 
may be obviated if one is able to store and compute the unaveraged isotropic idhitesimal 
response function in the DSS procedure. 
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the k dependence of 6, and gh is (k, pk) since the turbulence has axisymmetry.) 
These equations are (13) and (14) of Herring (1974), and we record them here for 
completeness : 

&(k, t ,  t’)/dt + V k 2 Q ( k ,  t ,  t’) 

= t’, ..s, P. ~ p a y A 4 ~ ” ( k , p , q ) S t ’ d s g ~ ( k ,  0 t ’ , s ) ~ ~ , ( p , t , S ) ~ ~ ( q , t , s )  

where 

x ~ m ( p p ) P , ( p , )  %,,(k,P,k-P). (A3) 

(A 4) 

(A 5 )  
(A 6) 

The expressions for A,, and Bnpv are 

1 A,,(k, P, 9) = IqJk P, a112, 
&3,,(k, P, 9) = 4pu(k, P. q)~,jW(k, P, q), 

&,,(k, P, 9) = %@”(P) .e?s)l [ q . e W l -  [e’(P) . eWl  [k*e”(q)l}. 

where 

and 

1ph,,(k, P, 9) = - 8i{[eh(k) Ws)l [s.efl(p)l+ [eh(k) .er”(p)l [P.e”(s)l} 

Here, the unit vectors eA(k) are given by (2.3). I n  (A 2), Id$p is the angular 
integration that spins the triangle formed by (k ,  p ,  q = Ik-pl) about k. 
Equation (A 2) results from writing the dp integration in the convolution integral 
entering the D1A as (pq/k)  dpdp, and choosing the polar p axis as k. Note 
that we have fixed the azimuthal k angle $k at zero, thereby restricting the 
present analysis to axisymmetrical turbulence. We now given an analytical 
method for the d& integration, and state the numerical method for effecting the 
dpk integration. 

To this end, we first note that the direction cosines entering (A 2) may be 
written as 

pk = COSI5’, (A 7) 

(A81 pp = cosy cos 15’ - cos $ sin y sin 8 = cosp, 

pn = (k-p).n/lk-pl = cos8cosP+cos$sinPsinB = cosq. (A9) 

I n  (A 8) and (A 9) (and in subsequent equations) we have dropped the subscript 
p on $, for notational convenience. Here /3 and y are interior angles opposite 
p and q and a is the exterior angle opposite k in the triangle formed by (k, p ,  q) .  
Consider now the d$ integral in (A2), which we denote generically as 4. Recog- 
nizing the form of (A 2), and the unitarity of theeA(k), this may be written as 
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fl(k).f'(q) = C O S / ~ - C O S ~ ~ C O S ~  

fl(k) . f2(q) = - sin 0 sin q5 sin /J' cos q 
f2(k) .fl(q) = sin 8 sin #J cos 8 sins 
f2(k) .f2(q) = cos/l(cos/3 - cos 8 cos q) + sin2 0 sin2 # sin2/3 

fl(k).q = -qsinBsin$sin/J' 

P(q).k = ksinOsinq5sinp 
P(q).k = k(cos/lcosq-cos8) 

P(k).P(p) = cosy-cosBcosp 
fl(k) .fS(p) = cosp sin 8 sin q5 sin y 
fl(k). fa@) = - cos 0 sin 0 sin 4 sin y 
f2(k) .f2(p) = cosy(cosy-cos8cosp) +sinZ8sin2q5sin2y 

f2(k).q = ~ ( C O S / ~ C O S B - C O S ~ )  

P(k).p = psinBsinq5siny 

f'(p).k = -ksinOsinq5siny 
P(p).k = k(cospcosy-cos8) 

f'(p).f'(q) = cosa-cospcosq 
fl(p) .f2(q) = -cosqsinBsin#sina 
f2(p).P(q) = cospsinBsinq5sina 
fa(p) .f2(q) = cos a(cos a - cosp cos q) + sin2 8 sin2 # sin2 a 

fl(q).p = ksinOsinq5sin/l 
P(q).p =p(cosacosq-cosp) 
fl(p).q = -ksinBsin+siny 
f2(p).q = q(cosacosp-cosq) 

TABLE 2 

P(k).p = ~ ( C O S ~ C O S ~ - C O S J J )  

where H(z ,  y) is polynomial in its arguments. Since, according to (A 8) and (A 9), 
,up and ,uq are linear in cos q5, it follows that the transformation Z = exp (i$) 
permits (A 10) to be evaluated by residues. The result is 

N 

n = O  
4 = [4/(sin38sin/3~iny)]~ C J,(B) Q,(O), (A 11) 

where 

and !2,(8) = coeff [H( - @(Z- Z-l), &(Z + Z-l)], 
{m 

(A 14) 1 
2, = (tan i p  cot 48 orreciprocal), 

2, = ( - cot i/3 tan 48 or reciprocal), 

Z3 = ( -tan -$y cot 48 or reciprocal), 

2, = (cot +y tan Q 8 or reciprocal), 

z,,, = l/Z, (n = 1,2,3,4). 

I n  (A l l ) ,  N is the maximum power of Z in H (  - @(Z- Z-l), -&(Z + 2-l)). I n  the 
definitions (A 14) for the Z,, we take that right-hand side whose absolute value is 
less than unity. It remains to work out the polynomials H .  (Note that there are 
as many H's as specifications (1, Z', m, n, A, py u).) According to (A 4)-(A 6), (A 8) 
and (A 9), the H(sin 6, cos q5)'s are simply related to (A 4) if unnormalized vectors 
fA(k) defined by 

fA(k) = sin8eA(k) (A 15) 
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replace the eh(k) entering (A 4)-(A 6). The relevant dot products entering (A 5) 
and (A6) are listed in table 2. To get the H's we use table 2 to evaluate dot 
products in (A 5) and (A 6), and then substitute (A 4) into (A 2) and (A 3), using 
(A 8) and (A 9) for pp and pq. The algebraic reduction to obtain equation (A 13) 
for a,(@ seems formidable, but is avoidable if we use the observation that 
SZ,(O) may be equivalently written as 

where T, = cos (n  arcos x), for which the Gauss-Tschebyschev integration 
method (of orderN)isexact, since H is apolynomialof degree d N .  Equation (A 16) 
then permits the algebra to be done by computer. 

At this stage, we have an exact expression for the right-hand sides of (A2) 
and (A 3), prior to the dpk integration. I n  performing this last integration, some 
care must be exercised, since according to (A 11)-(A 14), the angular distributions 
may in general have cusps at I9 = ,8 or 0 = y. Our numerical procedure here is to 
divide the ,uk interval (- I, 1) into subregions (- 1, --ax ( 1  cos PI, I COB y l ) ) ,  

and perform the dpk integrations on these subregions by Gauss-Legendre 
quadrature. 

Finally, we note that the restriction of axisymmetry may be removed simply 
by reintroducing the azimuthal k angle #k into both the angular expansion 
functions (i.e^replace 4 (cos 6,) by Yy(cos 8k, $k)) and the angular expansions 
of the scalar W(k) functions. 

(-max(I cos/q,Icosyl),min(I cosPl,Icosyl)) and Wn( I  C O S P I ,  I C O S Y l ) ,  + I ) ,  

REFERENCES 

IFERRING, J .  R. 1974 Approach of axisymmet,ric turbulence to  isotropy. Phys. Fluids, 
17, 854-2372. Erratum, Phys. Fluids, 19, 167. 

HERRING, J. R. & KRAICHNAN, R. H. 1972 Comparison of some approximations for 
isotropic turbulence. I n  Lect,ure notes in Physics, vol. 12, Statistical Models and Turbu- 
lence, pp. 148-194. Springer. 

HERRING, J. R., ORZAG, S. A., KRAICHNAN, R. H. & Fox, D. G. 1974 Decay of two- 
dimensional homogeneous turbulence. J .  Fluid Mech. 66, 41 7-444. 

KRAICHNAN, R. H. 1959 The structure of isotropic turbulence at very high Reynolds 
numbers. J. Fluid Mech. 5, 497-543. 

KRAICHNAN, R. H. 1964 Decay of isotropic turbulence in the direct-interaction approxi- 
mation. Phys. Fluids, 7, 1030-1048. 

KRAIOHNAN, R. H. 197 1 An almost-Markovian Ga,lilean-invariant turbulence model. J .  
Fluid Mech. 47, 513-524. 

LAUNDER, B. E., MORSE, A., RODI, W. & SPALDING, D. B. 1973 Prediction of free shear 
flows - a comparison of the performance of six turbulence models. In Proc. Langley 
Working Conf. Free Turbulent Shear Flows, N.A.S.A. Special Paper, SP-321, 
pp. 361-422. 

LESLIE, D. C. 1973 Developments in the Theory of Turbulence. Oxford: Clarendon Press. 
MOREAU, R. 1968 On magnetohydrodynamic turbulence. Proc. Symp. Turbulence of 

OGURA, Y .  1963 A consequence of the zero-fourth-cumulant approximation in the decay 
Fluids & P l m a a ,  Polytech. Inst. Brooklyn, pp. 359-372. 

of isotropic turbulence. J .  Fluid Mech. 16, 33-40. 



782 

ORSZAG, S. A. 1976 Lectures on the Statistical Theory of Turbulence, Proc. Les Houches 
Summer School. Springer. 

ORSZAG, S. A. & PATTERSON, G. S. 1972 Numerical simulation of turbulence. In  Lecture 
notes in Physics, vol. 12, Statistical Models and Turbulence, pp. 127-147. Springer. 

RILEY, J. J. & PATTERSON, G. S. 1974 Diffusion experiments with numerically integrated 
isotropic turbulence. Phys. Pluids. 17, 292-297. 

ROTTA, J. 1951 Statistische Theorie nichthomogener Turbulenz. 2. Phys. 129,547-572. 
SCHUMANN, U. 1975 Subgrid scale model for finite difference simulations of turbulent 

SCHUMANN, U. & PATTERSON, G. S. 1976a Numerical study of pressure and velocity 

SCHUMANN, U. & PATTERSON, G. S. 19768 Numerical study of the return of axisymmetric 

U .  Schumann and J .  R. Herring 

flows in plane channels and annuli. J .  Comp. Phys. 18, 376-404. 

fluctuations in nearly isotropic turbulence. Submitted to J .  Pluid Mech. 

turbulence to isotropy. Submitted to  J .  Fluid Mech. 


